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Abstract

Tabular data are omnipresent in various sectors of
industries. Neural networks for tabular data such
as TabNet have been proposed to make predic-
tions while leveraging the attention mechanism
for interpretability. We find that the inferred at-
tention masks on high-dimensional data are often
dense, hindering interpretability. To remedy this,
we propose the InterpreTabNet, a variant of the
TabNet model that models the attention mecha-
nism as a latent variable sampled from a Gumbel-
Softmax distribution. This enables us to regular-
ize the model to learn distinct concepts in the at-
tention masks via a KL Divergence regularizer. It
prevents overlapping feature selection by promot-
ing sparsity which maximizes the model’s efficacy
and improves interpretability to determine the im-
portant features when predicting the outcome. To
automate the interpretation of feature interdepen-
dencies from our model, we employ GPT-4 and
use prompt engineering to map from the learned
feature mask onto natural language text describing
the learned signal. Through comprehensive ex-
periments on real-world datasets, we demonstrate
that our InterpreTabNet Model outperforms pre-
vious methods for interpreting tabular data while
attaining competitive accuracy.

1. Introduction

Machine learning methods for tabular data enjoy broad
applications in diverse settings like healthcare (Clore and
Strack, 2014), insurance (Datta, 2020), and finance (Moro
and Cortez, 2012). While predictive performance is key in
these settings, practitioners often aim to translate predictive
models into intelligible insights. For example, a medical
practitioner working with tabular Electronic Health Records
may be interested in determining, from a large collection
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of features, those that contribute to a patient’s diagnosis.
Furthermore, an insurance underwriter working with tabu-
lar client data focuses on determining crucial factors that
influence a client’s risk profile.

Despite commendable advancements made by existing mod-
els such as TabNet (Arik and Pfister, 2020), there remains
a discernible gap in achieving an integration of accuracy
and interpretability. TabNet’s ability to generate learnable
masks for salient feature selection is limited as its inter-
pretation is ambiguous. The considerable overlap between
multiple masks makes it challenging for a user to discern
the salient features used by the model for reasoning at each
decision step. Other means of interpreting models of tab-
ular data, such as attention weights (Vaswani et al., 2017)
and SHAP values (Lundberg and Lee, 2017) have been
criticized for their inconsistency in providing meaningful
insights (Roberts et al., 2022) and the computational inten-
sity required to apply them to complex datasets (Jain and
Wallace, 2019). Additionally, tree-boosting methods such
as XGBoost (Chen and Guestrin, 2016) and LightGBM (Ke
et al., 2017) exhibited limitations in their interpretability
aspects when analyzed through the lens of SHAP values.
These models tend to distribute the prediction contribution
across an extensive range of features (Madakkatel and Hyp-
ponen, 2024), leading to less sparse representation of fea-
ture importance, making it difficult to identify important
features.

The objective of our work is to enhance the interpretability
of the established TabNet architecture, while maintaining
competitive accuracy on practical datasets. To do so, we
introduce InterpreTabNet, a modified variant of the TabNet
neural architecture, enabling us to sparsify the identity of
the predictive signals. Our work is premised on the hypoth-
esis that we can map the predictive signals from the TabNet
model onto a collection of sparse attribution masks that en-
code instance-wise feature significance. The sparsity of our
masks leads to quick and easy identification of the salient
features in the data. Having achieved this, we then enable
post-hoc, text-based interpretability, using large language
models (LLMs) (OpenAl, 2023) to draw upon rich prior
knowledge related to the application domain (Choi et al.,
2022) and provide textual summaries of our sparse masks.

Our work makes the following contributions:



1. We devise a regularization scheme that maximizes di-
versity between masks in the TabNet architecture. This
is in contrast to the default “sparsity regularizer” em-
ployed by TabNet (Grandvalet and Bengio, 2004); its
reliance on entropy often leads to a reuse of features
across attention masks within the architecture. Em-
pirically, under our regularization scheme, the model
learns to distill the predictive signals and generate
sparse masks, reducing these challenges implicit in
interpreting the feature masks generated by TabNet.
Furthermore, our method suffers from only a modest
tradeoff between accuracy and interpretability: we find
that our approach performs comparably to the other
baselines in accuracy but outperforms them consider-
ably in terms of interpretability.

2. Our regularization scheme relies on maximizing the
KL divergence (Kullback and Leibler, 1951) between
the distributions from which each TabNet attention
mask is implicitly sampled. Whereas the original Tab-
Net formulation does not explicitly characterize these
distributions, we leverage tools from variational in-
ference to model the attention weights within TabNet
as samples drawn from a Gumbel-Softmax distribu-
tion. By reformulating the attention weights within
TabNet as a latent variable model, we can directly con-
trol properties of the mask distributions (such as the
KL divergence) using regularized gradient-based opti-
mization.

3. Our method simplifies the learned importance masks
generated under TabNet, one potential concern is that
our method is unable to capture the rich interdepen-
dencies between features that are needed to interpret
model predictions in complex settings. We show that
leveraging rich linguistic priors in interpretation by
means of a large language model largely ameliorates
these concerns. We demonstrate how language models
can relate the learned feature masks to a world model
underlying the LLM (Hao et al., 2023) to form detailed
hypotheses about what is being learned at each step of
the TabNet decision-making pipeline.

2. Related Works

Learning from Tabular Data. Early works on deep learn-
ing architecture for tabular data, such as TabNet, uses a
sequential attention mechanism for tabular data analysis
(Arik and Pfister, 2020). Their prominent strength is the
capability to outperform other neural networks and deci-
sion trees on tabular datasets while yielding some level of
interpretability for feature selections. However, TabNet’s
self-attention transformers’ inability to capture diversify-
ing latent variables can lead to suboptimal feature selection.

To address this limitation, diversity-promoting regularizers
and latent models attempt to solve this problem (Xie et al.,
2017) (Xie et al., 2016). Subsequent work on tabular data
includes Net-DNF (Katzir et al., 2020), SubTab (Ucar et al.,
2021), and TabTransformer (Huang et al., 2020). Net-DNF
(Katzir et al., 2020) introduces an inductive bias that aligns
model structures with disjunctive normal form (DNF) and
emphasizes localized decisions. SubTab (Ucar et al., 2021)
transforms tabular data into a multi-view representation
learning task, enhancing latent representation. Furthermore,
TabTransformer (Huang et al., 2020) is a deep tabular data
modelling architecture built upon self-attention-based Trans-
formers.

Latent Variable Models. Latent variable models like
VAEs (Kingma and Welling, 2022) and their variations
have demonstrated attractive abilities to model complex
distributions and produce latent values. DirVAE has more
interpretable latent values with no collapsing issues (Joo
et al., 2019), while the cVAE (Kristiadi, 2016) models la-
tent variables and observed data, both on random variables,
which gain control of the data generation process on the
VAE. Additionally, the cVAE also generates diverse but
realistic output representations using stochastic inference
(Sohn et al., 2015). Transformer-based cVAE demonstrates
its excellent representation learning capability and control-
lability (Fang et al., 2021). We draw inspiration from these
VAE extensions and incorporate the cVAE into TabNet’s
architecture to capture and reconstruct discrete data.

Recent works in approximate inference for categorical
data include Categorical Reparameterization with Gumbel-
Softmax (Jang et al., 2016). In our paper, we leverage the
Gumbel-Softmax distribution as a key component of our
methodology to strike a balance between interpretability
and performance.

Model Interpretability. Methods from interpretability aim
to surface information about why a machine learning model
is making certain predictions to user. Broadly, there are
two families of methods in model interpretability. Intrinsic
interpretability refers to the scenario in which the user can
directly leverage the parameters learned by the model to
understand the rationale underlying the predictions. Lin-
ear models (Gauss, 1877), decision trees, Transformers (by
means of their learned attention weights), and TabNet (Arik
and Pfister, 2020), are all, to varying degrees, intrinsincally
interpretable methods. In contrast, methods from post-hoc
interpretability tackle the scenario in which the model may
be black-box: these methods instead attempt to approxi-
mate the decision-making process underlying the model,
which is then surfaced to the user. Methods like SHAP
(Lundberg and Lee, 2017), LIME (Ribeiro et al., 2016), and
Grad-CAM (Selvaraju et al., 2017) are methods for post-
hoc interpretability. The central tradeoff between intrinsic
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Figure 1: The InterpreTabNet architecture presents a variational formulation of the TabNet encoder. In our formulation, the
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weights of the attention masks produced by the TabNet encoder at each step k are treated as the parameters, B(()Z), s Bplis
of a Gumbel-Softmax distribution, A, unique to each instance (shown by the red dotted rectangle). This distribution is then
sampled to produce a single feature that is highlighted for each feature at each step (purple dot-dashed rectangle). This
figure shows k = 2 steps of the encoder architecture, over D = 5 features, for NV = 3 samples.

and post-hoc interpretability is this: while an intrinsically
interpretable model is (definitionally) faithful to its underly-
ing decision rule, it may be necessary to make simplifying
assumptions in the design of the model. Conversely, while
post-hoc interpretability methods can interpret models of
arbitrary complexity, the interpretable decision rule surfaced
by such procedures is only an approximate one (Du et al.,
2019). Our approach draws upon insights from both classes
of methods: we leverage tools from variational inference
to improve upon the intrinsic interpretability of TabNet,
and we employ a large language model to provide a richer
contextual interpretation of the learned features post-hoc.

3. The InterpreTabNet Model

Let (X,Y) % X x ) represent the covariates and outcome
that we want to model, respectively. As we are operating
in the tabular data regime, assume that X € RY*P where
each d € [1, ..., D] corresponds to a single discrete feature
in the data. Then, each m(i), y(i) represents D-vector and
label corresponding to a particular example.! Let P(|")
denote true probability density functions, and Q(+|-) denote
variational approximations of those densities.

3.1. High-Level Approach

The TabNet encoder architecture models the prediction pro-
cess, P(y | z), as a nonlinear combination of the covariates,
z, and a sequence of k learned attention masks. Feature
importance mask my, depicts the feature selected at the k-th

"Unless otherwise stated, our notation uses uppercase letters to
refer to distribution-level quantities, such as the distribution over
the covariates, and lowercase letters to refer to specific samples
drawn from those distributions.

decision step. We learn each mask, my, by applying the
TabNet Transformer in the encoder to the covariates and
previous attention mask at each step of a multi-step decision
process. Since the nonlinear combination is modeled using
a multi-layer perceptron (Haykin, 1994), inference within
TabNet’s encoder can be expressed as:

K—1
PI‘(y | 113) _ f(i\/lLP) (Z fi(fabNetiTransformer) (mlw l‘)) 7 (1)

k=0

where mj, = @ if kK = 0, and where % is a general-purpose
variable to denote the parameters that are associated with a
given MLP or TabNet Transformer sub-model. Our goal is
to construct a version of this model wherein each mask is
a latent variable in a deep generative model. Then we can
learn the model via amortized variational inference by infer-
ring my, using some parametric distribution () that admits
backpropagation by means of the reparameterization trick.
By specifying the form of the distribution mask samples
are from, we can directly adjust the properties of this la-
tent variable by regularizing the loss function. Specifically,
as our objective is to promote sparsity among the masks,
we will then aim to maximize the KL divergence between
subsequent masks of the decision steps.

In the following sections, we demonstrate how we sample
the masks in our architecture from a Gumbel-Softmax dis-
tribution (Jang et al., 2016). We choose Gumbel-Softmax
as a natural sampling distribution for the masks because the
salience of a feature can be treated as a categorical variable:
for each example 7 in mask k, a feature j can either be
"selected" (my,, = 1), or "not selected” (mg,; = 0). The
Gumbel-Softmax distribution offers a continuous relaxation
of a categorical distribution, thus facilitating application of
the reparameterization trick under our method.
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Figure 2: X/Y-axis labels denote the features and test samples for each respective mask at 4 decision steps of the Adult
Census Income dataset. Left (a): Learned masks associated with InterpreTabNet. Observe how for each example, there is
no overlap in the attention learned across different masks with high salience. This mutual exclusivity of attention across
masks makes for easier visual interpretation of the learned signal that InterpreTabNet leverages in its predictions. Right (b):
Learned masks associated with TabNet. Observe how, for each example, there exist overlaps in the attention learned for
each mask with no clear salience. This makes the masks challenging to interpret, as there is no obvious way to reconcile
attention that is distributed across multiple masks in this manner. Bottom (c¢): Stacked InterpreTabNet Feature Masks
between subsequent feature masks (Left to Right: Masks 0 & 1, 1 & 2, 2 & 3, 3 & 0) outlining no overlap and sparsity in

feature selection. More details can be found in Section 4.1.2.

3.2. Mask Sampling Process

The mask sampling process for our model is the follow-
ing, where Y represents the predicted outcome, z repre-
sents the concatenation of all the m; mask samples from a
Gumbel-Softmax distribution, X represents the data, and A
represents a Gumbel-Softmax distribution.

P(m|X) ~ Ar(TabNet_Transformer(X)),
fork =0
P(mg1|me, X) ~ Ak (TabNet_Transformer(my, X)),
forke[l,...,K —1].

TabNet’s model does not leverage its feature importance
masks to make predictions. Instead, it acts as a deterministic
system by producing its masks directly via its attentive
transformer. On the other hand, InterpreTabNet utilizes
these masks from the first iteration onwards (after the zeroth
iteration) as latent variables. These latent variables serve as
arich source of embedded knowledge, allowing the model to

improve its generalizations by acting as a stochastic process.
Furthermore, sampling this latent variable from the Gumbel-
Softmax distribution will act as a crucial component in
improving interpretability (details explored in Section 3.4).

Let us represent the collection of all k& masks,
[mo, ..., mi—1] as a single latent variable, z € RN %k drawn
from a Gumbel-Softmax distribution. Drawing samples z
from a categorical distribution with class probabilities 7 is
as follows.

z = one_hot (arg max(ﬁi + log m))

where (3, ..., Bp—1 are i.i.d samples drawn from a standard
Gumbel distribution, Gumbel(0,1)?

2As a small technical note, the original TabNet architecture
requires a ReLU function be applied to the embeddings between
blocks. Our sampling scheme ensures nonnegative mask values,
so this requirement is not necessary in our architecture.



The mask sampling process is characterized as a latent vari-
able problem. Thus, this necessitates the implementation of
inference techniques for effective learning.

3.3. Generating Predictions with the Conditional
Variational Autoencoder

We interpret TabNet’s encoder-decoder architecture as a
conditional variational autoencoder (cVAE) (Kingma and
Welling, 2022; Blei et al., 2017). We imagine an encoder
conditioned on two variables, Y and X, which leverages
the distribution Q(z|Y, X) to sample the feature masks,
z. Similarly, we imagine a decoder that conditions on
the feature masks, z, and the data X, to predict a corre-
sponding label drawn from P(Y |z, X). Using this frame-
work, we can derive a variational lower bound on this
cVAE. We do so by modelling the outcome, P(Y|X)
as [ P(Y|X,z)P(z|X)dz and inferring P(z) through
P(z|Y) using Q(z]Y). The derivation can be found in
Appendix 5.1.

log P(Y[X) — Dk [Q(=]Y, X)[|P(2]Y, X)]
= Eflog P(Y|z, X)] = D [Q(2]Y, X)||P(2]X)] (2)

= J

Figure 3: Graphical model of InterpreTabNet with D
i.i.d samples. Solid lines denote the generative model
po(Y|z, X)po(2z|X), dashed lines denote the variational
approximation ¢4(z|X,Y’) to the intractable posterior
po(z|X,Y). The variational parameters ¢ are learned jointly
with the generative model parameters 6.

3.4. Sparsity-Promoting Regularization

Our formulation of TabNet as a stochastic cVAE allows us
to directly promote mask sparsity by using the loss function
to encourage variation in the Gumbel-Softmax distributions
corresponding to adjacent masks. To do so, we incorporate
a KL Divergence Sparsity Regularizer (rj;) in the model
architecture. With the KL Divergence, we aim to maximize
the difference between the distribution of masks that are sub-
sequent to one another. This would reduce the number of
selected features, ensuring that the features selected are inde-
pendent between masks. Additionally, with a sparser feature
selection, the model can focus on fewer high-salience fea-
tures. Therefore, the ELBO of the InterpreTabNet model is
as follows with 7, as a tunable regularizer weight.

E[logP(Yz,Xn—;DKL((Q ) | (P ex))

sr o (@) || @) ©

i#j
3.5. Sparsity Regularizer (7)) Algorithm

To assess the level of interpretability a feature mask pro-
vides, we divide it into two sets of criteria.’

1. Number of selected features (e.g., number of important
features must be at least 2-3).

2. "Salience" of each feature (e.g., percentage of impor-
tance captured by one feature in each mask must be
between 20 and 25%).

Within a feature mask, we would like to swiftly identify the
salient features which contributes to its prediction. Thus,
our aim is to minimize the number of selected features, and
only select those of high salience, while maintaining a com-
petitive accuracy. This would yield an interpretable mask to
determine the important features.

We propose an adaptive algorithm to optimize our KL Diver-
gence Sparsity Regularizer, rj;, to improve interpretability
of the feature masks. Our method involves iterative training
and evaluation of the InterpreTabNet model with varying
values of r5; within a pre-defined range, to check fulfillment
of the above criteria. The end result is the optimal 7, value
corresponding to a balance between an interpretable feature
mask and classification accuracy, improving the overall effi-
cacy of our model. The algorithm and the full set of criteria
can be found in Appendix 5.2.

4. Experiments and Discussions

We evaluated the performance of InterpreTabNet on real-
world classification tasks both quantitatively and qualita-
tively.

Datasets. The model performance was evaluated on real-
world tabular datasets from UCI Machine Learning Repos-
itory (Kelly et al., 2023) and OpenML (Vanschoren et al.,
2013). These datasets were selected since they were used
to evaluate the existing methods (baselines). Additionally,
they varied in size and nature, with both categorical and
continuous features, to ensure a holistic evaluation of our
methodology across multiple domains and scenarios. The
training/validation/testing proportion of the datasets for each
split was 80/10/10% apart from the Higgs dataset. Due to
the inherently large Higgs dataset, we followed TabNet’s
method of data splitting with 500k training samples, 100k

3There are more criteria than those we enumerate here. Those
enumerated here are exemplars to aid understanding.



validation samples and 100k testing samples. Details of the
datasets can be found in Appendix 5.4.

Baselines: Accuracy. We compared our model against five
other ML methods for tabular classification. This included
the Original TabNet, XGBoost (Chen and Guestrin, 2016),
LightGBM (Ke et al., 2017), TabTransformer (Huang et al.,
2020) and multi-layer perceptrons (MLP) (Haykin, 1994).
For each model, we utilized the recommended hyperparam-
eters mentioned by the authors of their respective papers.
Furthermore, we also conducted a grid search within the
range of the recommended hyperparameters to optimize
the models, selecting the best-performing hyperparameter
configuration.

Baselines: Interpretability. We compared our model
against four other ML methods to determine which model
allowed the user to easily determine the important features
when predicting the outcome. This included the Original
TabNet, XGBoost, LightGBM and TabTransformer. We ex-
cluded MLPs as it performed notably worse than the other
models in accuracy. The interpretability figures for Inter-
preTabNet, Original TabNet, XGBoost and LightGBM were
feature masks whereas TabTransformer used an attention
mask. In order to compare the interpretability of feature
masks between InterpreTabNet, Original TabNet, XGBoost
and LightGBM, we conducted row-wise normalization on
the absolute SHAP values from XGBoost and LightGBM.
This yielded the same feature importance scale (relative im-
portance of each feature within each sample’s prediction) as
InterpreTabNet and Original TabNet.

Regularizer r,; Ablation Study In an ablation study on
how varying rj; values affected our masks (found in Ap-
pendix 5.7), we noticed that at low 7, values, test accuracy
was high but feature selection diversity was poor, and in-
terpretability were difficult since almost all features were
selected in the decision-making process. On the other hand,
at high 7, values, the masks were sparse which were easily
interpretable but at a cost of accuracy. Therefore, we en-
sured that our selected rj; using the Sparsity Regularizer
Algorithm in Section 3.5 provided us with a compromise of
a competitive accuracy while having the best interpretability
against the baseline models.

Computational Efficiency Our model necessitated an addi-
tional computation through the Gumbel-Softmax reparame-
terization and conditioning on the mask from the previous
time step when compared to TabNet. Nonetheless, this
extra step incured a minimal cost, leading to a mere several-
minute increase in training time. Furthermore, likewise to
TabNet, our model maintained greater computational effi-
ciency compared to other baseline models without necessi-
tating an extensive search for fine-grained hyperparameters.

4.1. Results

In the following section, we explored the Adult Census
Income dataset (Becker and Kohavi, 1996) to evaluate Inter-
preTabNet against other baselines.*

4.1.1. QUANTITATIVE ANALYSIS

The performance of our method relative to the baselines
for tabular learning is shown in Table 1. As observed, we
achieved the best performance in 2/7 datasets while main-
taining a competitive accuracy for the remaining 5/7 datasets.
Our most notable contribution was achieving a significant
improvement in interpretability.

4.1.2. QUALITATIVE ANALYSIS

(a) XGBoost (b)
SHAP SHAP

LightGBM (¢) TabTrans-
former Att. Wgts.

Figure 4: (a), (b), and (c) depicts the XGBoost SHAP Fea-
ture Mask, LightGBM SHAP Feature Mask, and TabTrans-
former Attention Weights for the Adult Census Income
Dataset, respectively. X/Y-axis labels denote the features
and test samples for the feature masks in (a) and (b) whereas
only features for the attention weights in (c).

Interpretability Evaluation Figure 2 highlighted the
learned masks associated with InterpreTabNet using a spar-
sity regularizer value of )y = 9 compared to those of
TabNet. The rows of each mask represented individual data
samples, while the columns represented discrete features
in the tabular data. Values of feature importance for each
test sample/row sum up to 1. Thus, bright yellow squares
indicated values close to/equal to 1, dark purple squares
indicated values close to/equal to 0, and other color squares
indicated values between 0 and 1.

As observed in Figure 2, our InterpreTabNet model high-
lighted mutually exclusive features of high importance that
were easily interpretable. Practioners could easily identify

“In the remainder of our paper, we will conduct all analyses on
the Adult Census Income dataset for simplicity purposes.



Table 1: Test Accuracy Scores with Optimal Mask Regularizer Values (r;) across Different Models and Datasets. Our
InterpreTabNet achieved substantial improvements in interpretability across all the datasets and remains competitive in

terms of accuracy in most datasets.

Model / Dataset ~ Adult Census  Forest Cover  Poker Hand Mushroom  Blastchar Diabetes Higgs
InterpreTabNet ~ 87.42 94.75 99.50 96.62 72.96 55.37 53.08
Original TabNet  85.55 94.18 99.00 99.94 76.22 56.91 52.94
XGBoost 86.60 92.30 75.57 99.69 77.29 61.44 72.70
LightGBM 86.20 86.38 78.47 100.00 77.86 60.87 72.62
TabTransformer  85.09 82.55 99.81 100.00 73.17 44.45 51.97
MLP 79.76 84.89 99.70 99.82 75.16 53.99 63.17

the salient features that were contributing to the outcome
prediction. On the contrary, feature masks of the Original
TabNet were more difficult to interpret since each mask
highlighted multiple features for a given data sample. Ad-
ditionally, when compared against the other baselines, In-
terpreTabNet leveraged sequential decision-making that al-
lowed users to understand how the model’s focus shifted and
how different features interacted over the decision process.

Figure 4 illustrated the complex pathways of model inter-
pretation inherent in our baseline architectures like XG-
Boost, LightGBM, and TabTransformer. These models ne-
cessitated additional tools to render interpretative insights.
Both XGBoost and LightGBM were augmented with SHAP
values derived from external SHAP packages to achieve
interpretability while TabTransformer relied on attention
weights.

The reliance on SHAP values in XGBoost and LightGBM
found in Figure 4 parts (a) and (b) distributed the contribu-
tion of the prediction across all features. This led to a less
sparse representation of feature importance. In practice, this
meant that while each feature’s contribution to the predic-
tion was identified, the significance of each feature was not
as distinct. This led to an interpretation where barely any
feature stood out, especially in models with a large number
of features where many contributed incrementally to the
final prediction. This lack of sparsity made it challenging
for practitioners to pinpoint a concise set of features for
understanding and analysis.

The attention mechanism of TabTransformer in Figure 4
part (c) provided a form of interpretability by capturing
relationships between features. However, it was unable to
clearly pinpoint a set of important features. Furthermore,
attention weights were typically dense, meaning that most
features will get some level of attention.

Human Evaluation Survey We conducted a small scale
human evaluation survey on 20 Ph.D. and Masters students
combined with a machine learning background. The survey
was conducted in a blind format where the identities of
the models were anonymous to ensure that our data was
trusted and not biased. The survey asked: "Which figure

do you think is the best method to determine the important
features?". 65% of respondents preferred InterpreTabnet
as the means to highlight salient features. This validated
our motivation that sparse feature selection distilled the
complexity of the data into a simpler and understandable
form for practical applications. InterpreTabNet provided
a concise set of important features, making it easier for
users to understand the underlying reasons for predictions,
trust the model’s outputs, and explain these outcomes to
stakeholders. The survey’s results can be found in Table 2.

Table 2: Human Evaluation Survey on Interpretability

Model Vote Percentage Number of Votes
InterpreTabNet 65% 13

TabNet 15% 3

XGBoost 5% 1

LightGBM 5% 1

TabTransformer  10% 2

Total 100% 20

Though the results of our survey were promising, future
work could replicate these findings on a larger sample size,
and progress beyond asking users for their preference by
evaluating the users’ ability to interpret model predictions
under different interpretability schemes.

4.2. Capturing Feature Interdependencies by
Prompting LLMs

We have generated an interpretable feature mask where users
could determine the important features. However, one issue
was that our approach did not grasp the interrelationships
among features required to explain model predictions in
complicated scenarios. Therefore, we leveraged LLMs such
as GPT-4 to incorporate extensive linguistic priors into the
interpretation process that helped mitigate the issues.

In order to generate a precise output mapping, instructions

SLink to the survey: https://forms.gle/87PDZo56RUtHqFSb9



were provided to GPT-4 where the extracted salient features
would be formatted into a dictionary. Each mask corre-
sponded to an individual analysis, followed by an aggregate
analysis of all masks. Furthermore, a statement to ensure
that GPT-4 produced no other natural language generation
was added in order to maintain a consistent output map.

Finally, GPT-4 was provided with in-context examples to
enable prompt tuning through few-shot learning. This was
conducted via 3-fold cross-validation where datasets D1 and
D2 were used as part of the prompt for tuning on D3, D2 and
D3 as part of the prompt for tuning on D1, and so on. Only
a 3-fold CV was conducted since increasing the subsets will
decrease GPT-4’s performance as it was unable to process
extremely long sequences of texts.

Overall, GPT-4 improved the analysis of salient features
extracted from InterpreTabNet by explaining their interde-
pendencies. The structure of the designed prompt can be
found in Table 3. The full prompts and outputs can be found
in Appendix 5.8 and 5.9 respectively.

Table 3: Prompt Structure Design

Section Description

The Adult Census Income dataset is
considered...

Dataset Description

Mask Description At the Oth step of feature selection,
we observe mask 0 with the main fea-

tures highlighted as 1, 5, and 7...

The Poker Hand dataset is consid-
ered...

Output: {"Mask 0": "Initially, the
rank of card 2 is recognized...}

In-Context Example 1
In-Context Output 1

The Forest Cover Type dataset is con-
sidered...

Output: {"Mask 0": "The initial fea-
ture selection identifies... }

In-Context Example 2

In-Context Output 2

GPT-4 Output {"Mask 0": "This suggests that early
in the feature selection process, the

model finds that work-related...}

4.3. Justifying GPT-4’s Analyzing Abilities of
InterpreTabNet’s Internal Behavior

A potential concern was whether GPT-4 actually interpreted
the model’s internal behavior rather than merely rephras-
ing the prompt input. To address this, we conducted the
following three experiments to demonstrate that the model
exhibited a genuine understanding of the data.

Definition Check We tested the integrity of our prompt with
a definition check on ’feature mask’. Figure 12 in Appendix
5.10 aligned with our expectations, providing an accurate
and detailed explanation.

GPT-4 With vs. Without InterpreTabNet We tested if
GPT-4 alone without InterpreTabNet could identify the
salient features and elucidated their relationships from the
Adult dataset. However, as observed in Appendix 5.10 Table
8, GPT-4 was unable to determine the salient features even
when the dataset information was provided. For the first
prompt, it was unable to compile any aggregate analysis.
In the second prompt, the important features that were ex-
tracted were not accurate as well as being dense, selecting
more than 50% (8/14) of the features.

Trust in GPT-4’s Analysis We tried various prompts for
interpretability to strengthen the trust in the generated ex-
planations whilst determining which prompt design yielded
the most insightful and accurate explanations from GPT-4.
We explored explanations in different formats, and varying
levels of detail. The results can be found in Tables 9 and 10
of Appendix 5.10. Our analysis indicated that our original
prompt structure led to a higher level of detail and attempted
to deduce deeper meanings from the prominent features, as
opposed to simply categorizing them. This suggested a level
of interpretive understanding by GPT-4 that went beyond
basic rephrasing, thereby reinforcing the effectiveness of
our prompt design.

5. Conclusion

We propose an interpretable variant of the TabNet neural net-
work that is as expressive in learning the distributions of tab-
ular data while enabling an enhanced level of interpretability.
This model is designed by blending a Gumbel-Softmax dis-
tribution with a KL divergence sparsity regularizer between
the attention-based feature masks to create a sparse and
semantically meaningful decomposition of the predictive
signals. Relative to our baselines, our model outputs more
interpretable feature masks to determine salient features
while maintaining its competitive accuracy across all base-
lines for most datasets. The salient features from our masks
are channelled into GPT-4 via a carefully engineered prompt
that outputs an analysis of the features’ interdependencies.
For practitioners, the InterpreTabNet distills the predictive
signals allowing it to stand as a practical toolkit for under-
standing where tabular data comes from. It bridges the often
challenging gap between intricate machine learning outputs
and real-world decision-making, ensuring that insights are
not just extracted but are also intuitively understood and
readily actionable.



Impact Statement

This paper introduces InterpreTabNet to improve the inter-
pretability of machine learning models that handle tabu-
lar data. Its primary societal impact lies in offering more
transparent, understandable deep-learning predictions and
decisions. This is crucial in high-stakes human-oriented sec-
tors such as healthcare and finance, where decision-making
impacts human lives.

Ethically, InterpreTabNet represents a step towards responsi-
ble Al as it allows users to understand how and why specific
decisions are made, enhancing trust and reducing the black
box’ nature of complex models. However, there are poten-
tial risks. An example could be an over-reliance on model
interpretations, leading to neglecting other important factors
not captured by the model.
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Appendix
5.1. Proof: ¢cVAE Evidence Lower Bound

Dics QY. XIPEIY, )] = 3 QY Xt oG
QY. X)
= Bl py x)

= Ellog Q(2Y, X) — log P(z]Y, X)]
using Bayes’ rule
P(z,Y,X)
P(Y,X) ]
P(Y|z, X)P(z,X)
P(Y.X)

= Eflog Q(z|Y, X) — log

= FEllog Q(z]Y, X) — log

P
= Ellog Q(z|Y, X) — log

= Eflog Q(z|Y, X) — log

z|Y, X) — log

2|V, X) — (log P(Y|z, X) + log P(2|X) — log P(Y|X))]
2|V, X) —log P(Y|z, X) — log P(2]|X) + log P(Y|X)]
2|Y, X) —log P(Y|z, X) — log P(2|X)] + log P(Y|X)
Dic[Q(=IY, X)|[P(2]Y. X)] — log P(Y|X) = Ellog Q(=[Y, X) — log (Y12, X) — log P(2|X))

rearranging the sign to rewrite RHS as another KL Divergence

_
o
o]
O
==X X

log P(Y |X) ~ Dics Q1Y X)I|P(:[Y, X)) = Ellog (Y2, X) ~ (log Q(:1Y, X) ~ log P(:] X))
log P(Y ) — Dics [QUEIY: X)[|P(EIY, X)) = Elog P(V]2, X))~ Bllog Q(eIY, X) ~ log P(<1)]
log P(YLX) ~ Dt QY. X)IIP(AY. X)] = Bllog P(Y]2, X)] ~ Ellog 2 )

log P(Y ) — Dics [QUEIY, X)l|P(:IY, X)) = Ellog (Y2, X)] ~ D @AY, X) | P(:1)]

which is the cVAE objective function
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5.2. Algorithm: KL Divergence Sparsity Regularizer r,,

The algorithm analyzes the model’s feature importance masks to validate that they meet a set criterion. This criterion is
to validate that the masks are sparse and that the features the model selects are important. Upon fulfilling the criterion a
specific number of times, the algorithm terminates. To increase efficiency, the algorithm also employs a recursive search to
narrow down the value range around the current best 7, thereby reducing computational overhead.

Algorithm 1 Our proposed algorithm for interpretability optimization. Good default settings for the tested machine learning
problems are o = 0, § = [0, 10000000], § = [0.20,0.25], v = [2, 3] € = [3,5]. For 3, § and 7, it would depend on the

nature of the dataset. More samples require higher parameter values.

Require: o: Starting range (start)
Require: 3: Ending range (end)

Require:
Require:
Require:

0: Percentage of feature importance captured by one feature in each feature mask (col_threshold_val)
~: Number of columns that satisfies § in each feature mask (col_threshold)
¢: Number of complete-feature masks that passes the algorithm’s feature selection criteria (all_mask_pass)

Require: ¢: Threshold for the number of complete-feature masks that passes the algorithm’s feature selection criteria

Require: (: Step size computed using a logarithmic scale at high levels (step_size)

(all_mask_pass_thresh)

Require: 6: Dictionary storing 7s-accuracy pairs (reg_m_acc_dict)
Require: \: Flag for recursion (is_recursive)
Ensure: Optimal regularization parameter 73,

PN AW —

. Initialize @ if 6 is None.
: Initialize ¢ if ¢ is None.
. if + = ¢ then

ry = arg max(6)
return '},

. end if
: while < fand ¢ < € do

Train TabNet, Compute Accuracy and Generate Masks

if Criteria for updating 6 and ¢ are met then

Update 0, ¢
end if
if )\ then
a=a+(
elseif a = 0 then
a=10
else
ax = 10
end if
: end while

. if r}; is Not None & Length of 6 = 1 then

Recurse with updated boundaries.

: else

ry = arg max(6)
return 3,

. end if

> Inner loop evaluating each feature mask here.
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5.3. Reproducibility

Availability of Datasets The datasets used in this paper are all freely accessible on OpenML. OpenML.org and
UCI Machine Learning Repository. Download links and additional statistical details about the datasets can
be found in Appendix 5.4 of the paper.

5.4. Additional Dataset Information

We evaluated our model on 7 datasets. These datasets contain 4 binary classification tasks and 3 multi-class classification
tasks. We provided statistical details in Table 4, and download links in Table 5. In each of our datasets, we applied label
encoding to the categorical features to transform textual values into numerical representations. Additionally, we introduced
a distinct token to handle missing data within these categorical columns. This uniform preprocessing approach was applied
consistently across all datasets, ensuring compatibility and reliability for subsequent machine learning analyses.

Table 4: Datasets used for evaluation

Dataset Task # Features # Categorical # Instances # Classes # NaNs
Adult Census Income Binary 14 8 32,560 2 0
Forest Cover Type Multi-Class 54 44 581,012 7 0
Poker Hand Multi-Class 10 10 1,025,010 10 0
Mushroom Binary 22 22 8,124 2 0
Blastchar Binary 20 17 7,043 2 0
Diabetes Multi-Class 49 39 101,766 3 0
Higgs Binary 28 0 11,000,000 2 0

Table 5: Dataset Links

Dataset Name Dataset Link

Adult Census Income https://archive.ics.uci.edu/dataset/2/adult

Forest Cover Type https://archive.ics.uci.edu/dataset/31/covertype

Poker Hand https://archive.ics.uci.edu/dataset/158/poker+hand

Mushroom https://archive.ics.uci.edu/dataset/73/mushroom

Blastchar https://www.kaggle.com/datasets/blastchar/telco-customer—churn

Diabetes https://archive.ics.uci.edu/dataset/296/diabetes+130-us+
hospitals+for+years+1999-2008

Higgs https://archive.ics.uci.edu/dataset/280/higgs
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5.5. Hyperparameters Search Space

We provided hyperparameter search spaces for all models in Table 6. For TabTransformer, we used the same hyperparameter
space mentioned in their paper (Huang et al., 2020). XGboost and LightGBM were designed from scratch and used common
hyperparameter choices with suggestions from the official documentation (Chen and Guestrin, 2016) (Ke et al., 2017). For
MLP, we followed the exact hyperparameter search space as (Huang et al., 2020).

Table 6: Hyperparameter spaces for all models

Model Hyperparameter Space

Ny = N, (output dimension): [16, 32, 128],
Nsteps: [3a 4, 5]7

~:[1.0, 1.2, 1.5, 2.0],

A: [0.001, 0.01, 0.1, 0.3],

Learning Rate: [0.005, 0.01, 0.02, 0.025],
rpr: range from [0, 1,000,000,000,000]

InterpreTabNet

N4 = N, (output dimension): [16, 32, 128],
Nstcps: [3’ 4, 5]’

~:[1.0, 1.2, 1.5, 2.0],

A: [0.001, 0.01, 0.1, 0.3],

Learning Rate: [0.005, 0.01, 0.02, 0.025],
ras: range from [0, 1,000,000,000,000]

Original TabNet

Hidden Dimension: [32, 54, 128, 256],
Number of Layers: [1, 2, 3, 6, 12],
Number of Attention Heads: [2, 4, 8],

TabTransformer ~MLP First Hidden Layer: = m x I,m € Z|1 < m < 8, where [ is the input
size,
MLP Second Hidden Layer: x = m x I,m € Z|1 < m < 3, where [ is the
input size

learning_rate: [0.01, 0.1, 0.2],
max_depth: [3, 4, 5, 6],
n_estimators: [50, 100, 200],
subsample: [0.8, 0.9],
colsample_bytree: [0.8, 0.9],
min_child_weight: [1, 2, 3]

XGBoost

num_leaves: [20, 30, 40],
learning_rate: [0.05, 0.1, 0.2],
LightGBM n_estimators: [100, 200],
subsample: [0.8, 0.9],
colsample_bytree: [0.8, 0.9]

First Hidden Layer: © = m x I,m € Z|1 < m < 8, where [ is the input size,
MLP Second Hidden Layer: z = m x [,m € Z|1 < m < 3, where [ is the input
size
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5.6. Results from other datasets (Accuracies & Masks)

FOREST COVER TYPE (DUA AND GRAFF, 2017)

Model Test Accuracy (%)
XGBoost 92.30
LightGBM 86.38
TabTransformer 82.55
MLP 79.76
Original TabNet 94.18
InterpreTabNet (5, = 900) 94.75
mask 0 mask 1 mask 2 mask 3

Test Samples
Test Samples
w N
8 S
Test samples
Test Samples

s
&

0 10 20 30 10 20 30

10 20 30 40
Features Features Features Features

0 10 20 30

(a) InterpreTabNet

mask 0 mask 1 mask 2 mask 3
0

Test samples
Test samples
Test Samples
Test Samples

10 20 30 a0 50

0 10 20 30 a0 50
Features Features Features Features

0 10 20 30 40 50 10 20 30 40 50

(b) Original TabNet Model

Figure 5: (a) Best performing model using InterpreTabNet 3, = 900 with an accuracy of 94.75% on the Forest Cover Type
Dataset. (b) The baseline performance using the Original TabNet model, attaining an accuracy of 94.18%.
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POKER HAND (CATTRAL AND OPPACHER, 2007)

Model Test Accuracy (%)
XGBoost 75.57
LightGBM 78.47
TabTransformer 99.81
MLP 99.70
Original TabNet 99.00
InterpreTabNet (r}, = 1000) 99.50

(a) InterpreTabNet (b) Original TabNet Model

Figure 6: (a) Best performing model using InterpreTabNet 3, = 1000 with an accuracy of 99.13% on the Poker Hand
Dataset. (b) The baseline performance using the Original TabNet model, attaining an accuracy of 99.23%.
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HIGGS (WHITESON, 2014)

Model Test Accuracy (%)
XGBoost 7291
LightGBM 72.62
TabTransformer 51.97
MLP 63.17
Original TabNet 52.94
InterpreTabNet (r}, = 10000) 53.08
mask 0 mask 1 mask 2 mask 3

Test samples
Test samples
Test samples
Test samples

15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Features Features Features Features

(a) InterpreTabNet

mask 0 mask 1 mask 2 mask 3
0

Test samples
Test samples
Test Samples
Test samples

10 15 20 25
Features Features Features Features

15 15 15

(b) Original TabNet Model

Figure 7: (a) Best performing model using InterpreTabNet 73, = 10000 with an accuracy of 53.08% on the Higgs Dataset.
(b) The baseline performance using the Original TabNet model, attaining an accuracy of 60.22%.
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MUSHROOM (MUS, 1987)

Model Test Accuracy (%)
XGBoost 99.69
LightGBM 100.00
TabTransformer 100.00
MLP 99.82
Original TabNet 99.94
InterpreTabNet (r}, = 10, 000, 000, 000, 000) 96.62

mask 0 mask 1 mask 2 mask 3

Test samples
Test samples
Test samples

(a) InterpreTabNet

mask 0 mask 1 mask 3

Test Samples
Test Samples
Test Samples
Test Samples

«
8

40

10
Features

(b) Original TabNet Model

Figure 8: (a) Best performing model using InterpreTabNet 3, = 1,000, 000, 000, 0000 with an accuracy of 96.62% on the
Mushroom Dataset. (b) The baseline performance using the Original TabNet model, attaining an accuracy of 99.94%.
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BLASTCHAR (BLASTCHAR, 2018)

Model Test Accuracy (%)
XGBoost 77.29
LightGBM 77.86
TabTransformer 73.17
MLP 75.16
Original TabNet 76.22
InterpreTabNet (r}, = 10, 000, 000, 000, 000) 72.96

mask 0 mask 3

3
S

E E E E
3 3 3 3
& & & &
30 30 30 30
s a w s
00 25 50 75 10.0 125 150 175 00 25 50 75 100 125 150 17.5 00 25 50 75 100 125 150 175 00 25 50 75 10.0 125 150 17.5
Features Features Features Features
mask 0 mask 1
0 o o
10 10 10
20 20 20
2 2 2 g
£ E E £
3 3 3 3
& & 8 &
30 30 EY
a0 o W

75 100 12.5 15.0 17.5

00 25 50 75 100 125 15.0 17.5

00 2.5 50 7.5 100 125 150 17.5
tures

00 25 50 75 100 12.5 15.0 17.5
Feal Features

(b) Original TabNet Model

Figure 9: (a) Best performing model using InterpreTabNet r;, = 10,000, 000, 000, 000 with an accuracy of 72.96% on the
Blastchar Dataset. (b) The baseline performance using the Original TabNet model, attaining an accuracy of 76.22%.
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DIABETES (CLORE AND STRACK, 2014)

Model Test Accuracy (%)
XGBoost 61.44
LightGBM 60.87
TabTransformer 44.45
MLP 53.99
Original TabNet 56.91
InterpreTabNet (%, = 100, 000, 000) 55.37
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(b) Original TabNet Model

Figure 10: (a) Best performing model using InterpreTabNet r}, = 100, 000, 000 with an accuracy of 55.38% on the Diabetes
Dataset. (b) The baseline performance using the Original TabNet model, attaining an accuracy of 56.91%.
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5.7. Ablation Study on InterpreTabNet’s Interpretability for varying r,, values

ADULT CENSUS INCOME MASK FIGURES

mmmmm mask 1

EE

(c) InterpreTabNet (), = 100) (d) InterpreTabNet (r3, = 1000)

Figure 11: As the rj; value increases, both feature mask sparsity and feature importance increases, improving the
interpretability of the masks.
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5.8. Prompts for all datasets
ADULT CENSUS INCOME

Conduct aggregate analysis on the description of the following feature mask. Please output ONLY a dictionary and no other
natural language generation when generating the sentence as shown in the in-context example below. Please use single-word
classification that encapsulates the meaning of the features if possible.

The Adult Census Income dataset is considered which predicts whether an individual’s income exceeds $50,000 per year.
There are 50 test samples and 14 features.

At the Oth step of feature selection, we observe mask 0 with the main features highlighted as 1, 5 and 7 which are workclass,
marital status and relationship. At the 1st step of feature selection, we observe mask 1 with the main features highlighted as 1
and 5 which are workclass and marital status. At the 2nd step of feature selection, we observe mask 2 with the main features
highlighted as 8, 10 and 12 which are race, capital gain and hours-per-week. Lastly, at the 3rd step of feature selection, we
observe mask 3 with the main features highlighted as 1, 7 and 10 which are workclass, relationship and capital-gain.

Here are in-context examples for few-shot learning.

The Poker Hand dataset is considered, which is a classification of poker hands into 10 distinct types based on attributes like
rank of individual cards, suits, and card combinations. There are 50 test samples and 10 features.

At the Oth step of feature selection, we observe mask 0 with the main feature highlighted as 3 which is the rank of the card 2.
At the Ist step of feature selection, we observe mask 1 with the main feature highlighted as 7 which is the rank of card 3.
At the 2nd step of feature selection, we observe mask 2 with the main feature highlighted as 6 which is the suit of card 3.
Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features highlighted as 3, 6, 7 and 10 which are
the rank of cards 1 and 3 as well as the suits of cards 3 and 5.

Output: {"Mask 0": "Initially, the rank of card 2 is recognized as a significant predictor in the classification of poker hands.
The rank of individual cards seems crucial at this stage.", "Mask 1": "At this step, the rank of card 3 is highlighted, further
emphasizing the importance of individual card ranks in determining poker hand types.", "Mask 2": "Here, besides the rank
of card 3, the suit of the same card is considered, suggesting that both rank and suit play roles in classifying poker hands.",
"Mask 3": "This step combines multiple features, both ranks (cards 1 and 3) and suits (cards 3 and 5), indicating that a
combination of these factors provides a broader understanding of poker hand classifications.", "Aggregate": "The rank of
cards, specifically card 2 and card 3, appears consistently across different masks, indicating their primary role in poker
hand classification. Suits, particularly of card 3, also have importance but are introduced later in the feature selection. The
combined importance of both ranks and suits in the final step suggests that while individual card ranks are pivotal in initial
classifications, understanding the relationship between card ranks and their respective suits provides a more comprehensive
insight into the poker hand types. The consistent presence of card 3’s attributes (both rank and suit) underscores its pivotal
role in determining poker hand categories." }

The Forest Cover Type dataset is considered which is a classification of pixels into 7 forest cover types based on attributes
such as elevation, aspect, slope, and more. There are 50 test samples and 54 features.

At the Oth step of feature selection, we observe mask 0 with the main features highlighted as 24, 29 and 34 which are
different soil types. At the 1st step of feature selection, we observe mask 1 with the main feature highlighted as 34 which is
soil type. At the 2nd step of feature selection, we observe mask 2 with the main features highlighted as 10, 34 and 37 which
are wilderness area and soil types. Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features
highlighted as 0 and 29 which are elevation, and soil type.

Output: {"Mask 0": "The initial feature selection identifies that various soil types are significant predictors for the forest
cover types. It appears that the characteristics of the soil play a vital role in determining the type of forest cover.", "Mask 1"
"At this step, the model emphasizes even more on one particular soil type (34), suggesting it as a primary driver for the
classification. This specific soil type may have unique characteristics making it a distinctive feature for certain forest cover
types.", "Mask 2": "Here, besides the emphasis on soil type 34, another soil type (37) and wilderness area are considered.
This suggests that both the nature of the terrain (wilderness) and the characteristics of the soil together contribute to the
forest cover type.", "Mask 3": "This step introduces elevation as a significant predictor while still retaining a soil type.
Elevation, combined with soil characteristics, might influence specific flora and subsequently determine forest cover types.",
"Aggregate": "Soil type 34 is the most consistent feature across all the masks, appearing in every step, emphasizing its
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importance in the forest cover type classification. Another soil type, 29, is also consistent, appearing in both mask 0 and 3.
The presence of different features across the steps, like wilderness area (mask 2) and elevation (mask 3), indicates that the
landscape’s nature and the physical height of the terrain are also important but might offer secondary or nuanced insights
into forest cover types. The dominant predictor seems to be soil types, particularly soil type 34, suggesting that specific soil
characteristics play a crucial role in determining forest cover types. However, aspects like elevation and the nature of the
terrain (wilderness area) also contribute to the classification and shouldn’t be overlooked." }

FOREST COVER TYPE

Conduct aggregate analysis on the description of the following feature mask. Please output ONLY a dictionary and no other
natural language generation when generating the sentence as shown in the in-context example below. Please use single-word
classification that encapsulates the meaning of the features if possible.

The Forest Cover Type dataset is considered which is a classification of pixels into 7 forest cover types based on attributes
such as elevation, aspect, slope, and more. There are 50 test samples and 54 features.

At the Oth step of feature selection, we observe mask O with the main features highlighted as 24, 29 and 34 which are
different soil types. At the Ist step of feature selection, we observe mask 1 with the main feature highlighted as 34 which is
soil type. At the 2nd step of feature selection, we observe mask 2 with the main features highlighted as 10, 34 and 37 which
are wilderness area and soil types. Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features
highlighted as 0 and 29 which are elevation, and soil type.

Here are in-context examples for few-shot learning.

The Adult Census Income dataset is considered which predicts whether an individual’s income exceeds $50,000 per year.
There are 50 test samples and 14 features.

At the Oth step of feature selection, we observe mask 0 with the main features highlighted as 1, 5 and 7 which are workclass,
marital status and relationship. At the 1st step of feature selection, we observe mask 0 with the main features highlighted as 1
and 5 which are workclass and marital status. At the 2nd step of feature selection, we observe mask 2 with the main features
highlighted as 8, 10 and 12 which are race, capital gain and hours-per-week. Lastly, at the 3rd step of feature selection, we
observe mask 3 with the main features highlighted as 1, 7 and 10 which are workclass, relationship and capital-gain.

Output: {"Mask 0": "This suggests that early in the feature selection process, the model finds that work-related factors (like
the type of work) and personal relationships (both marital status and other relationships) are significant predictors for income
exceeding $50,000.", "Mask 1": "Here, the model emphasizes even more on work nature and marital status, suggesting
these two as the primary drivers for the prediction. Relationship as a feature has been excluded in this step, which might
indicate a possible correlation with marital status.”, "Mask 2": "At this step, the model seems to be looking beyond just
personal and work nature to more financial and demographic aspects. Capital gain, which is directly related to financial
health, is considered along with hours-per-week, potentially pointing to a relationship between longer working hours and
higher income. The inclusion of race might indicate underlying societal or economic factors at play.", "Mask 3": "This
combination brings back features from both the initial and second masks. Workclass and relationship are revisited, which
further underscores their importance. Capital gain remains consistent from the second step, emphasizing its importance
as a predictor for income.", "Aggregate": "The features that consistently appear across multiple masks are: workclass
(masks 0, 1, and 3), relationship (masks O and 3), and capital gain (masks 2 and 3). This highlights that these features
play a pivotal role in predicting whether an individual’s income exceeds $50,000 per year. Marital status is seen in the
initial stages but disappears later, while hours-per-week and race come into play at the second step. This could indicate that
while some features provide foundational predictive power, others may provide more nuanced insight or refinement to the
model’s predictions. Work-related aspects, personal relationships, and financial metrics seem to be the main predictors of an
individual’s income level in this dataset. It would be crucial to further analyze these features’ exact impacts and understand
any potential correlations among them for a more comprehensive understanding." }

The Poker Hand dataset is considered, which is a classification of poker hands into 10 distinct types based on attributes like
rank of individual cards, suits, and card combinations. There are 50 test samples and 10 features.

At the Oth step of feature selection, we observe mask 0 with the main feature highlighted as 3 which is the rank of the card 2.
At the 1st step of feature selection, we observe mask 1 with the main feature highlighted as 7 which is the rank of card 3.
At the 2nd step of feature selection, we observe mask 2 with the main feature highlighted as 6 which is the suit of card 3.
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Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features highlighted as 3, 6, 7 and 10 which are
the rank of cards 1 and 3 as well as the suits of cards 3 and 5.

Output: {"Mask 0": "Initially, the rank of card 2 is recognized as a significant predictor in the classification of poker hands.
The rank of individual cards seems crucial at this stage.", "Mask 1": "At this step, the rank of card 3 is highlighted, further
emphasizing the importance of individual card ranks in determining poker hand types.", "Mask 2": "Here, besides the rank
of card 3, the suit of the same card is considered, suggesting that both rank and suit play roles in classifying poker hands.",
"Mask 3": "This step combines multiple features, both ranks (cards 1 and 3) and suits (cards 3 and 5), indicating that a
combination of these factors provides a broader understanding of poker hand classifications.", "Aggregate": "The rank of
cards, specifically card 2 and card 3, appears consistently across different masks, indicating their primary role in poker
hand classification. Suits, particularly of card 3, also have importance but are introduced later in the feature selection. The
combined importance of both ranks and suits in the final step suggests that while individual card ranks are pivotal in initial
classifications, understanding the relationship between card ranks and their respective suits provides a more comprehensive
insight into the poker hand types. The consistent presence of card 3’s attributes (both rank and suit) underscores its pivotal
role in determining poker hand categories." }

POKER HAND PROMPT

Conduct aggregate analysis on the description of the following feature mask. Please output ONLY a dictionary and no other
natural language generation when generating the sentence as shown in the in-context example below. Please use single-word
classification that encapsulates the meaning of the features if possible.

The Poker Hand dataset is considered, which is a classification of poker hands into 10 distinct types based on attributes like
rank of individual cards, suits, and card combinations. There are 50 test samples and 10 features.

At the Oth step of feature selection, we observe mask 0 with the main feature highlighted as 3 which is the rank of the card 2.
At the Ist step of feature selection, we observe mask 1 with the main feature highlighted as 7 which is the rank of card 3.
At the 2nd step of feature selection, we observe mask 2 with the main feature highlighted as 6 which is the suit of card 3.
Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features highlighted as 3, 6, 7 and 10 which are
the rank of cards 1 and 3 as well as the suits of cards 3 and 5.

Here are in-context examples for few-shot learning.

The Adult Census Income dataset is considered which predicts whether an individual’s income exceeds $50,000 per year.
There are 50 test samples and 14 features. At the Oth step of feature selection, we observe mask 0 with the main features
highlighted as 1, 5 and 7 which are workclass, marital status and relationship. At the 1st step of feature selection, we
observe mask 0 with the main features highlighted as 1 and 5 which are workclass and marital status. At the 2nd step of
feature selection, we observe mask 2 with the main features highlighted as 8, 10 and 12 which are race, capital gain and
hours-per-week. Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features highlighted as 1, 7
and 10 which are workclass, relationship and capital-gain.

Output: {"Mask 0": "This suggests that early in the feature selection process, the model finds that work-related factors (like
the type of work) and personal relationships (both marital status and other relationships) are significant predictors for income
exceeding $50,000.", "Mask 1": "Here, the model emphasizes even more on work nature and marital status, suggesting
these two as the primary drivers for the prediction. Relationship as a feature has been excluded in this step, which might
indicate a possible correlation with marital status.”, "Mask 2": "At this step, the model seems to be looking beyond just
personal and work nature to more financial and demographic aspects. Capital gain, which is directly related to financial
health, is considered along with hours-per-week, potentially pointing to a relationship between longer working hours and
higher income. The inclusion of race might indicate underlying societal or economic factors at play.", "Mask 3": "This
combination brings back features from both the initial and second masks. Workclass and relationship are revisited, which
further underscores their importance. Capital gain remains consistent from the second step, emphasizing its importance
as a predictor for income.", "Aggregate": "The features that consistently appear across multiple masks are: workclass
(masks 0, 1, and 3), relationship (masks O and 3), and capital gain (masks 2 and 3). This highlights that these features
play a pivotal role in predicting whether an individual’s income exceeds $50,000 per year. Marital status is seen in the
initial stages but disappears later, while hours-per-week and race come into play at the second step. This could indicate that
while some features provide foundational predictive power, others may provide more nuanced insight or refinement to the
model’s predictions. Work-related aspects, personal relationships, and financial metrics seem to be the main predictors of an
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individual’s income level in this dataset. It would be crucial to further analyze these features’ exact impacts and understand
any potential correlations among them for a more comprehensive understanding."}

The Forest Cover Type dataset is considered which is a classification of pixels into 7 forest cover types based on attributes
such as elevation, aspect, slope, and more. There are 50 test samples and 54 features.

At the Oth step of feature selection, we observe mask 0 with the main features highlighted as 24, 29 and 34 which are
different soil types. At the 1st step of feature selection, we observe mask 1 with the main feature highlighted as 34 which is
soil type. At the 2nd step of feature selection, we observe mask 2 with the main features highlighted as 10, 34 and 37 which
are wilderness area and soil types. Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features
highlighted as 0 and 29 which are elevation, and soil type.

Output: {"Mask 0": "The initial feature selection identifies that various soil types are significant predictors for the forest
cover types. It appears that the characteristics of the soil play a vital role in determining the type of forest cover.", "Mask 1"
"At this step, the model emphasizes even more on one particular soil type (34), suggesting it as a primary driver for the
classification. This specific soil type may have unique characteristics making it a distinctive feature for certain forest cover
types.", "Mask 2": "Here, besides the emphasis on soil type 34, another soil type (37) and wilderness area are considered.
This suggests that both the nature of the terrain (wilderness) and the characteristics of the soil together contribute to the
forest cover type.", "Mask 3": "This step introduces elevation as a significant predictor while still retaining a soil type.
Elevation, combined with soil characteristics, might influence specific flora and subsequently determine forest cover types.",
"Aggregate": "Soil type 34 is the most consistent feature across all the masks, appearing in every step, emphasizing its
importance in the forest cover type classification. Another soil type, 29, is also consistent, appearing in both mask 0 and 3.
The presence of different features across the steps, like wilderness area (mask 2) and elevation (mask 3), indicates that the
landscape’s nature and the physical height of the terrain are also important but might offer secondary or nuanced insights
into forest cover types. The dominant predictor seems to be soil types, particularly soil type 34, suggesting that specific soil
characteristics play a crucial role in determining forest cover types. However, aspects like elevation and the nature of the
terrain (wilderness area) also contribute to the classification and shouldn’t be overlooked."}

MUSHROOM PROMPT

Conduct aggregate analysis on the description of the following feature masks. Start off with an analysis of the individual
masks, followed by an aggregate analysis of all masks combined. Please format the output into a dictionary as shown in the
in-context examples. The output should only contain the formatted output, no other natural language generation is required.

The Mushroom dataset is considered, which is a classification of mushrooms into edible or poisonous categories based on
attributes like cap shape, gill color, stalk length, and other morphological characteristics. There are 50 test samples and 22
features.

At the Oth step of feature selection, we observe mask 0 with the main features highlighted as 5, 6 and 17 which are bruises,
odor and veil-type. At the st step of feature selection, we observe mask 1 with the main feature highlighted as 5, 6, 11
which are bruises, odor and stalk-shape. At the 2nd step of feature selection, we observe mask 2 with the main features
highlighted as 7, 14, 17 which are gill-attachment, stalk-surface-below-ring and veil-type. Lastly, at the 3rd step of feature
selection, we observe mask 3 with the main features highlighted as 5, 6, 7 and 17 which are bruises, odor, gill-attachment
and veil-type.

Here are in-context examples for few-shot learning.

The Adult Census Income dataset is considered which predicts whether an individual’s income exceeds $50,000 per year.
There are 50 test samples and 14 features. At the Oth step of feature selection, we observe mask 0 with the main features
highlighted as 1, 5 and 7 which are workclass, marital status and relationship. At the 1st step of feature selection, we
observe mask 0 with the main features highlighted as 1 and 5 which are workclass and marital status. At the 2nd step of
feature selection, we observe mask 2 with the main features highlighted as 8, 10 and 12 which are race, capital gain and
hours-per-week. Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features highlighted as 1, 7
and 10 which are workclass, relationship and capital-gain.

Output: {"Mask 0": "This suggests that early in the feature selection process, the model finds that work-related factors (like
the type of work) and personal relationships (both marital status and other relationships) are significant predictors for income
exceeding $50,000.", "Mask 1": "Here, the model emphasizes even more on work nature and marital status, suggesting
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these two as the primary drivers for the prediction. Relationship as a feature has been excluded in this step, which might
indicate a possible correlation with marital status.”, "Mask 2": "At this step, the model seems to be looking beyond just
personal and work nature to more financial and demographic aspects. Capital gain, which is directly related to financial
health, is considered along with hours-per-week, potentially pointing to a relationship between longer working hours and
higher income. The inclusion of race might indicate underlying societal or economic factors at play.", "Mask 3": "This
combination brings back features from both the initial and second masks. Workclass and relationship are revisited, which
further underscores their importance. Capital gain remains consistent from the second step, emphasizing its importance
as a predictor for income.", "Aggregate": "The features that consistently appear across multiple masks are: workclass
(masks 0, 1, and 3), relationship (masks O and 3), and capital gain (masks 2 and 3). This highlights that these features
play a pivotal role in predicting whether an individual’s income exceeds $50,000 per year. Marital status is seen in the
initial stages but disappears later, while hours-per-week and race come into play at the second step. This could indicate that
while some features provide foundational predictive power, others may provide more nuanced insight or refinement to the
model’s predictions. Work-related aspects, personal relationships, and financial metrics seem to be the main predictors of an
individual’s income level in this dataset. It would be crucial to further analyze these features’ exact impacts and understand
any potential correlations among them for a more comprehensive understanding." }

The Forest Cover Type dataset is considered which is a classification of pixels into 7 forest cover types based on attributes
such as elevation, aspect, slope, and more. There are 50 test samples and 54 features.

At the Oth step of feature selection, we observe mask 0 with the main features highlighted as 24, 29 and 34 which are
different soil types. At the st step of feature selection, we observe mask 1 with the main feature highlighted as 34 which is
soil type. At the 2nd step of feature selection, we observe mask 2 with the main features highlighted as 10, 34 and 37 which
are wilderness area and soil types. Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features
highlighted as 0 and 29 which are elevation, and soil type.

Output: {"Mask 0": "The initial feature selection identifies that various soil types are significant predictors for the forest
cover types. It appears that the characteristics of the soil play a vital role in determining the type of forest cover.", "Mask 1":
"At this step, the model emphasizes even more on one particular soil type (34), suggesting it as a primary driver for the
classification. This specific soil type may have unique characteristics making it a distinctive feature for certain forest cover
types.", "Mask 2": "Here, besides the emphasis on soil type 34, another soil type (37) and wilderness area are considered.
This suggests that both the nature of the terrain (wilderness) and the characteristics of the soil together contribute to the
forest cover type.", "Mask 3": "This step introduces elevation as a significant predictor while still retaining a soil type.
Elevation, combined with soil characteristics, might influence specific flora and subsequently determine forest cover types.",
"Aggregate": "Soil type 34 is the most consistent feature across all the masks, appearing in every step, emphasizing its
importance in the forest cover type classification. Another soil type, 29, is also consistent, appearing in both mask 0 and 3.
The presence of different features across the steps, like wilderness area (mask 2) and elevation (mask 3), indicates that the
landscape’s nature and the physical height of the terrain are also important but might offer secondary or nuanced insights
into forest cover types. The dominant predictor seems to be soil types, particularly soil type 34, suggesting that specific soil
characteristics play a crucial role in determining forest cover types. However, aspects like elevation and the nature of the
terrain (wilderness area) also contribute to the classification and shouldn’t be overlooked."}

BLASTCHAR PROMPT

Conduct aggregate analysis on the description of the following feature masks. Start off with an analysis of the individual
masks, followed by an aggregate analysis of all masks combined. Please format the output into a dictionary as shown in the
in-context examples. The output should only contain the formatted output, no other natural language generation is required.

The BlastChar Telco Customer Churn dataset is considered, which is a classification of customers into retained or churned
categories based on attributes like gender, seniority, tenure, service subscriptions, contract type, billing methods, and charges,
among others. There are 50 test samples and 21 features.

At the Oth step of feature selection, we observe mask 0 with the main features highlighted as 13, 16, and 17 which are
StreamingTV, PaperlessBilling and PaymentMethod. At the 1st step of feature selection, we observe mask 1 with the
main feature highlighted as 2 and 16 which are SeniorCitizen and PaperlessBilling. At the 2nd step of feature selection,
we observe mask 2 with the main features highlighted as 8, 11, and 18 which are InternetService, DeviceProtection, and
MonthlyCharges. Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features highlighted as 3, 11,
and 17 which are Partner, DeviceProtection, and PaymentMethod.
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Here are in-context examples for few-shot learning.

The Adult Census Income dataset is considered which predicts whether an individual’s income exceeds $50,000 per year.
There are 50 test samples and 14 features. At the Oth step of feature selection, we observe mask 0 with the main features
highlighted as 1, 5 and 7 which are workclass, marital status and relationship. At the 1st step of feature selection, we
observe mask O with the main features highlighted as 1 and 5 which are workclass and marital status. At the 2nd step of
feature selection, we observe mask 2 with the main features highlighted as 8, 10 and 12 which are race, capital gain and
hours-per-week. Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features highlighted as 1, 7
and 10 which are workclass, relationship and capital-gain.

Output: {"Mask 0": "This suggests that early in the feature selection process, the model finds that work-related factors (like
the type of work) and personal relationships (both marital status and other relationships) are significant predictors for income
exceeding $50,000.", "Mask 1": "Here, the model emphasizes even more on work nature and marital status, suggesting
these two as the primary drivers for the prediction. Relationship as a feature has been excluded in this step, which might
indicate a possible correlation with marital status.”, "Mask 2": "At this step, the model seems to be looking beyond just
personal and work nature to more financial and demographic aspects. Capital gain, which is directly related to financial
health, is considered along with hours-per-week, potentially pointing to a relationship between longer working hours and
higher income. The inclusion of race might indicate underlying societal or economic factors at play."”, "Mask 3": "This
combination brings back features from both the initial and second masks. Workclass and relationship are revisited, which
further underscores their importance. Capital gain remains consistent from the second step, emphasizing its importance
as a predictor for income.", "Aggregate": "The features that consistently appear across multiple masks are: workclass
(masks 0, 1, and 3), relationship (masks 0 and 3), and capital gain (masks 2 and 3). This highlights that these features
play a pivotal role in predicting whether an individual’s income exceeds $50,000 per year. Marital status is seen in the
initial stages but disappears later, while hours-per-week and race come into play at the second step. This could indicate that
while some features provide foundational predictive power, others may provide more nuanced insight or refinement to the
model’s predictions. Work-related aspects, personal relationships, and financial metrics seem to be the main predictors of an
individual’s income level in this dataset. It would be crucial to further analyze these features’ exact impacts and understand
any potential correlations among them for a more comprehensive understanding." }

The Forest Cover Type dataset is considered which is a classification of pixels into 7 forest cover types based on attributes
such as elevation, aspect, slope, and more. There are 50 test samples and 54 features.

At the Oth step of feature selection, we observe mask O with the main features highlighted as 24, 29 and 34 which are
different soil types. At the Ist step of feature selection, we observe mask 1 with the main feature highlighted as 34 which is
soil type. At the 2nd step of feature selection, we observe mask 2 with the main features highlighted as 10, 34 and 37 which
are wilderness area and soil types. Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features
highlighted as 0 and 29 which are elevation, and soil type.

Output: {"Mask 0": "The initial feature selection identifies that various soil types are significant predictors for the forest
cover types. It appears that the characteristics of the soil play a vital role in determining the type of forest cover.", "Mask 1":
"At this step, the model emphasizes even more on one particular soil type (34), suggesting it as a primary driver for the
classification. This specific soil type may have unique characteristics making it a distinctive feature for certain forest cover
types.", "Mask 2": "Here, besides the emphasis on soil type 34, another soil type (37) and wilderness area are considered.
This suggests that both the nature of the terrain (wilderness) and the characteristics of the soil together contribute to the
forest cover type.", "Mask 3": "This step introduces elevation as a significant predictor while still retaining a soil type.
Elevation, combined with soil characteristics, might influence specific flora and subsequently determine forest cover types.",
"Aggregate": "Soil type 34 is the most consistent feature across all the masks, appearing in every step, emphasizing its
importance in the forest cover type classification. Another soil type, 29, is also consistent, appearing in both mask 0 and 3.
The presence of different features across the steps, like wilderness area (mask 2) and elevation (mask 3), indicates that the
landscape’s nature and the physical height of the terrain are also important but might offer secondary or nuanced insights
into forest cover types. The dominant predictor seems to be soil types, particularly soil type 34, suggesting that specific soil
characteristics play a crucial role in determining forest cover types. However, aspects like elevation and the nature of the
terrain (wilderness area) also contribute to the classification and shouldn’t be overlooked." }
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DIABETES PROMPT

Conduct aggregate analysis on the description of the following feature masks. Start off with an analysis of the individual
masks, followed by an aggregate analysis of all masks combined. Please format the output into a dictionary as shown in the
in-context examples. The output should only contain the formatted output, no other natural language generation is required.

The Diabetes 130-US hospitals for years 1999-2008 dataset is considered, which is a classification of patient encounters into
readmitted or not readmitted categories based on attributes like the number of laboratory tests performed, the number of
medications prescribed, diagnoses, and other clinical and administrative data. There are 50 test samples and 50 features.

At the Oth step of feature selection, we observe mask 0 with the main features highlighted as 7, 21, 31, and 40 which are
discharge disposition id, number diagnoses, glyburide, and citoglipton. At the 1st step of feature selection, we observe mask
1 with the main feature highlighted as 6 and 7 which are admission type id and discharge disposition id. At the 2nd step
of feature selection, we observe mask 2 with the main features highlighted as 6, 21, and 45 which are admission type id,
number diagnoses, and metformin. Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features
highlighted as 21, 30, 45 which are number diagnoses, glipizide, and metformin.

Here are in-context examples for few-shot learning.

The Adult Census Income dataset is considered which predicts whether an individual’s income exceeds $50,000 per year.
There are 50 test samples and 14 features. At the Oth step of feature selection, we observe mask 0 with the main features
highlighted as 1, 5 and 7 which are workclass, marital status and relationship. At the 1st step of feature selection, we
observe mask O with the main features highlighted as 1 and 5 which are workclass and marital status. At the 2nd step of
feature selection, we observe mask 2 with the main features highlighted as 8, 10 and 12 which are race, capital gain and
hours-per-week. Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features highlighted as 1, 7
and 10 which are workclass, relationship and capital-gain.

Output: {"Mask 0": "This suggests that early in the feature selection process, the model finds that work-related factors (like
the type of work) and personal relationships (both marital status and other relationships) are significant predictors for income
exceeding $50,000.", "Mask 1": "Here, the model emphasizes even more on work nature and marital status, suggesting
these two as the primary drivers for the prediction. Relationship as a feature has been excluded in this step, which might
indicate a possible correlation with marital status.”, "Mask 2": "At this step, the model seems to be looking beyond just
personal and work nature to more financial and demographic aspects. Capital gain, which is directly related to financial
health, is considered along with hours-per-week, potentially pointing to a relationship between longer working hours and
higher income. The inclusion of race might indicate underlying societal or economic factors at play.", "Mask 3": "This
combination brings back features from both the initial and second masks. Workclass and relationship are revisited, which
further underscores their importance. Capital gain remains consistent from the second step, emphasizing its importance
as a predictor for income.", "Aggregate": "The features that consistently appear across multiple masks are: workclass
(masks 0, 1, and 3), relationship (masks O and 3), and capital gain (masks 2 and 3). This highlights that these features
play a pivotal role in predicting whether an individual’s income exceeds $50,000 per year. Marital status is seen in the
initial stages but disappears later, while hours-per-week and race come into play at the second step. This could indicate that
while some features provide foundational predictive power, others may provide more nuanced insight or refinement to the
model’s predictions. Work-related aspects, personal relationships, and financial metrics seem to be the main predictors of an
individual’s income level in this dataset. It would be crucial to further analyze these features’ exact impacts and understand
any potential correlations among them for a more comprehensive understanding." }

The Forest Cover Type dataset is considered which is a classification of pixels into 7 forest cover types based on attributes
such as elevation, aspect, slope, and more. There are 50 test samples and 54 features.

At the Oth step of feature selection, we observe mask O with the main features highlighted as 24, 29 and 34 which are
different soil types. At the st step of feature selection, we observe mask 1 with the main feature highlighted as 34 which is
soil type. At the 2nd step of feature selection, we observe mask 2 with the main features highlighted as 10, 34 and 37 which
are wilderness area and soil types. Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features
highlighted as 0 and 29 which are elevation, and soil type.

Output: {"Mask 0": "The initial feature selection identifies that various soil types are significant predictors for the forest
cover types. It appears that the characteristics of the soil play a vital role in determining the type of forest cover.", "Mask 1":
"At this step, the model emphasizes even more on one particular soil type (34), suggesting it as a primary driver for the
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classification. This specific soil type may have unique characteristics making it a distinctive feature for certain forest cover
types.", "Mask 2": "Here, besides the emphasis on soil type 34, another soil type (37) and wilderness area are considered.
This suggests that both the nature of the terrain (wilderness) and the characteristics of the soil together contribute to the
forest cover type.", "Mask 3": "This step introduces elevation as a significant predictor while still retaining a soil type.
Elevation, combined with soil characteristics, might influence specific flora and subsequently determine forest cover types.",
"Aggregate": "Soil type 34 is the most consistent feature across all the masks, appearing in every step, emphasizing its
importance in the forest cover type classification. Another soil type, 29, is also consistent, appearing in both mask 0 and 3.
The presence of different features across the steps, like wilderness area (mask 2) and elevation (mask 3), indicates that the
landscape’s nature and the physical height of the terrain are also important but might offer secondary or nuanced insights
into forest cover types. The dominant predictor seems to be soil types, particularly soil type 34, suggesting that specific soil
characteristics play a crucial role in determining forest cover types. However, aspects like elevation and the nature of the
terrain (wilderness area) also contribute to the classification and shouldn’t be overlooked."}

Hi1GGS PROMPT

Conduct aggregate analysis on the description of the following feature mask. Please output ONLY a dictionary and no other
natural language generation when generating the sentence as shown in the in-context example below. Please use single-word
classification that encapsulates the meaning of the features if possible.

The Higgs dataset is considered, which is a classification of events into signal and background processes based on attributes
like jet kinematics, lepton momentum, and other high-energy physics variables. There are 50 test samples and 28 features.
At the Oth step of feature selection, we observe mask 0 with the main features highlighted as 22 and 25 which are the
invariant mass of the lepton, the missing energy, and the leading jet, as well as the four leading jets. At the Ist step of feature
selection, we observe mask 1 with the main feature highlighted as 6 which is the Azimuthal angle for the second leading
jet. At the 2nd step of feature selection, we observe mask 2 with the main features highlighted as 15 and 25 which are the
transverse momentum for the second leading jet and the invariant mass of the lepton, the missing energy, and the leading jet..
Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features highlighted as 8 and 16 which are the
B-tagging score for the second leading jet and the pseudorapidity of the lepton.

Here are in-context examples for few-shot learning.

The Adult Census Income dataset is considered which predicts whether an individual’s income exceeds $50,000 per year.
There are 50 test samples and 14 features. At the Oth step of feature selection, we observe mask 0 with the main features
highlighted as 1, 5 and 7 which are workclass, marital status and relationship. At the Ist step of feature selection, we
observe mask 0 with the main features highlighted as 1 and 5 which are workclass and marital status. At the 2nd step of
feature selection, we observe mask 2 with the main features highlighted as 8, 10 and 12 which are race, capital gain and
hours-per-week. Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features highlighted as 1, 7
and 10 which are workclass, relationship and capital-gain.

Output: {"Mask 0": "This suggests that early in the feature selection process, the model finds that work-related factors (like
the type of work) and personal relationships (both marital status and other relationships) are significant predictors for income
exceeding $50,000.", "Mask 1": "Here, the model emphasizes even more on work nature and marital status, suggesting
these two as the primary drivers for the prediction. Relationship as a feature has been excluded in this step, which might
indicate a possible correlation with marital status.”, "Mask 2": "At this step, the model seems to be looking beyond just
personal and work nature to more financial and demographic aspects. Capital gain, which is directly related to financial
health, is considered along with hours-per-week, potentially pointing to a relationship between longer working hours and
higher income. The inclusion of race might indicate underlying societal or economic factors at play.", "Mask 3": "This
combination brings back features from both the initial and second masks. Workclass and relationship are revisited, which
further underscores their importance. Capital gain remains consistent from the second step, emphasizing its importance
as a predictor for income.", "Aggregate": "The features that consistently appear across multiple masks are: workclass
(masks 0, 1, and 3), relationship (masks 0 and 3), and capital gain (masks 2 and 3). This highlights that these features
play a pivotal role in predicting whether an individual’s income exceeds $50,000 per year. Marital status is seen in the
initial stages but disappears later, while hours-per-week and race come into play at the second step. This could indicate that
while some features provide foundational predictive power, others may provide more nuanced insight or refinement to the
model’s predictions. Work-related aspects, personal relationships, and financial metrics seem to be the main predictors of an
individual’s income level in this dataset. It would be crucial to further analyze these features’ exact impacts and understand
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any potential correlations among them for a more comprehensive understanding."}

The Forest Cover Type dataset is considered which is a classification of pixels into 7 forest cover types based on attributes
such as elevation, aspect, slope, and more. There are 50 test samples and 54 features.

At the Oth step of feature selection, we observe mask 0 with the main features highlighted as 24, 29 and 34 which are
different soil types. At the 1st step of feature selection, we observe mask 1 with the main feature highlighted as 34 which is
soil type. At the 2nd step of feature selection, we observe mask 2 with the main features highlighted as 10, 34 and 37 which
are wilderness area and soil types. Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features
highlighted as 0 and 29 which are elevation, and soil type.

Output: {"Mask 0": "The initial feature selection identifies that various soil types are significant predictors for the forest
cover types. It appears that the characteristics of the soil play a vital role in determining the type of forest cover.", "Mask 1":
"At this step, the model emphasizes even more on one particular soil type (34), suggesting it as a primary driver for the
classification. This specific soil type may have unique characteristics making it a distinctive feature for certain forest cover
types.", "Mask 2": "Here, besides the emphasis on soil type 34, another soil type (37) and wilderness area are considered.
This suggests that both the nature of the terrain (wilderness) and the characteristics of the soil together contribute to the
forest cover type.", "Mask 3": "This step introduces elevation as a significant predictor while still retaining a soil type.
Elevation, combined with soil characteristics, might influence specific flora and subsequently determine forest cover types.",
"Aggregate": "Soil type 34 is the most consistent feature across all the masks, appearing in every step, emphasizing its
importance in the forest cover type classification. Another soil type, 29, is also consistent, appearing in both mask 0 and 3.
The presence of different features across the steps, like wilderness area (mask 2) and elevation (mask 3), indicates that the
landscape’s nature and the physical height of the terrain are also important but might offer secondary or nuanced insights
into forest cover types. The dominant predictor seems to be soil types, particularly soil type 34, suggesting that specific soil
characteristics play a crucial role in determining forest cover types. However, aspects like elevation and the nature of the
terrain (wilderness area) also contribute to the classification and shouldn’t be overlooked." }
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5.9. Output text from GPT-4 on all datasets for mask interpretation

Dataset

Output from GPT-4

Adult Census Income

{"Mask 0": "This suggests that early in the feature selection process, the
model finds that work-related factors (like the type of work) and personal
relationships (both marital status and other relationships) are significant
predictors for income exceeding $50,000.",

"Mask 1": "Here, the model emphasizes even more on work nature
and marital status, suggesting these two as the primary drivers for the
prediction. Relationship as a feature has been excluded in this step,
which might indicate a possible correlation with marital status.",
"Mask 2": "At this step, the model seems to be looking beyond just
personal and work nature to more financial and demographic aspects.
Capital gain, which is directly related to financial health, is considered
along with hours-per-week, potentially pointing to a relationship between
longer working hours and higher income. The inclusion of race might
indicate underlying societal or economic factors at play.",

"Mask 3": "This combination brings back features from both the initial
and second masks. Workclass and relationship are revisited, which
further underscores their importance. Capital gain remains consistent
from the second step, emphasizing its importance as a predictor for
income.",

"Aggregate": "The features that consistently appear across multiple
masks are: workclass (masks 0, 1, and 3), relationship (masks 0 and
3), and capital gain (masks 2 and 3). This highlights that these features
play a pivotal role in predicting whether an individual’s income exceeds
$50,000 per year. Marital status is seen in the initial stages but disap-
pears later, while hours-per-week and race come into play at the second
step. This could indicate that while some features provide foundational
predictive power, others may provide more nuanced insight or refinement
to the model’s predictions. Work-related aspects, personal relationships,
and financial metrics seem to be the main predictors of an individual’s
income level in this dataset. It would be crucial to further analyze these
features’ exact impacts and understand any potential correlations among
them for a more comprehensive understanding."}
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Forest Cover Type

{"Mask 0": "The initial feature selection identifies that various soil types
are significant predictors for the forest cover types. It appears that the
characteristics of the soil play a vital role in determining the type of
forest cover.",

"Mask 1": "At this step, the model emphasizes even more on one partic-
ular soil type (34), suggesting it as a primary driver for the classification.
This specific soil type may have unique characteristics making it a dis-
tinctive feature for certain forest cover types.",

"Mask 2": "Here, besides the emphasis on soil type 34, another soil
type (37) and wilderness area are considered. This suggests that both
the nature of the terrain (wilderness) and the characteristics of the soil
together contribute to the forest cover type.",

"Mask 3": "This step introduces elevation as a significant predictor while
still retaining a soil type. Elevation, combined with soil characteristics,
might influence specific flora and subsequently determine forest cover
types.",

"Aggregate": "Soil type 34 is the most consistent feature across all
the masks, appearing in every step, emphasizing its importance in the
forest cover type classification. Another soil type, 29, is also consistent,
appearing in both mask 0 and 3. The presence of different features across
the steps, like wilderness area (mask 2) and elevation (mask 3), indicates
that the landscape’s nature and the physical height of the terrain are also
important but might offer secondary or nuanced insights into forest cover
types. The dominant predictor seems to be soil types, particularly soil
type 34, suggesting that specific soil characteristics play a crucial role in
determining forest cover types. However, aspects like elevation and the
nature of the terrain (wilderness area) also contribute to the classification
and shouldn’t be overlooked."}

Poker Hand

{"Mask 0": "Initially, the rank of card 2 is recognized as a significant
predictor in the classification of poker hands. The rank of individual
cards seems crucial at this stage.",

"Mask 1": "At this step, the rank of card 3 is highlighted, further em-
phasizing the importance of individual card ranks in determining poker
hand types.",

"Mask 2": "Here, besides the rank of card 3, the suit of the same card is
considered, suggesting that both rank and suit play roles in classifying
poker hands.",

"Mask 3": "This step combines multiple features, both ranks (cards 1
and 3) and suits (cards 3 and 5), indicating that a combination of these
factors provides a broader understanding of poker hand classifications.",
"Aggregate": "The rank of cards, specifically card 2 and card 3, appears
consistently across different masks, indicating their primary role in poker
hand classification. Suits, particularly of card 3, also have importance but
are introduced later in the feature selection. The combined importance of
both ranks and suits in the final step suggests that while individual card
ranks are pivotal in initial classifications, understanding the relationship
between card ranks and their respective suits provides a more compre-
hensive insight into the poker hand types. The consistent presence of
card 3’s attributes (both rank and suit) underscores its pivotal role in
determining poker hand categories." }

32



Mushroom

{"Mask 0": "At the outset of the feature selection process, the model
identifies physical attributes such as bruises, odor, and veil-type as
significant indicators for classifying mushrooms into edible or poisonous
categories. This suggests that visible physical changes and inherent
characteristics play an essential role in the initial classification stages.",
"Mask 1": "In this step, stalk-shape is introduced while retaining bruises
and odor from the previous mask. Here, the model seems to emphasize
the physical appearance (bruises and stalk-shape) in conjunction with
inherent characteristics (odor) for the classification. Veil-type, although
significant in the initial step, is omitted here, hinting at its reduced
relevance or a possible correlation with other selected features.",
"Mask 2": "The model shifts its attention here, emphasizing gill-
attachment and stalk-surface-below-ring while still retaining the veil-
type. This shift indicates the significance of features directly related to
the mushroom’s growth structure and its underlying layers. The absence
of previously highlighted features suggests a refined approach to feature
importance at this step.",

"Mask 3": "This combination merges the significant features from the
earlier masks, highlighting bruises, odor, gill-attachment, and veil-type.
The recurrence of these features underscores their consistent importance
in classifying mushrooms. The introduction of gill-attachment here,
combined with its presence in the previous mask, further emphasizes its
role.",

"Aggregate": "The features that consistently appear across multiple
masks are: bruises (masks 0, 1, and 3), odor (masks 0, 1, and 3), and
veil-type (masks 0, 2, and 3). This suggests that these attributes play a
crucial role in distinguishing between edible and poisonous mushrooms
in this dataset. Gill-attachment, although appearing in the latter stages
(masks 2 and 3), indicates its significance in the classification process.
The dataset appears to highlight the importance of physical attributes
(like bruises and stalk-shape), inherent characteristics (like odor), and
growth-related features (like gill-attachment and stalk-surface-below-
ring) in determining the edibility of mushrooms. Further investigation
into these features’ interactions and exact impacts would provide deeper
insights into the classification process."}
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Blastchar

{ "Mask 0": "The initial feature selection suggests that aspects related
to customer service preferences such as StreamingTV and billing and
payment methods like PaperlessBilling and PaymentMethod are signif-
icant predictors for customer churn. These features might be pointing
towards a customer’s comfort and adaptability with the service’s digital
offerings.",

"Mask 1": "In this step, demographic aspects come into play with the
inclusion of SeniorCitizen, suggesting that age or seniority might have a
bearing on customer churn. The continued emphasis on PaperlessBilling
also underlines its importance in this prediction.",

"Mask 2": "At this juncture, the model considers the type of service
subscribed by the customer, as seen from the inclusion of InternetService
and DeviceProtection. MonthlyCharges also comes into the picture,
indicating that the amount being charged could play a role in a customer’s
decision to stay or leave the service. It’s possible that customers assess
the value they receive from these services against what they are being
charged.",

"Mask 3": "In this combination, there’s a mix of service-related (Devi-
ceProtection), demographic (Partner), and payment (PaymentMethod)
features. The appearance of Partner might indicate the influence of fam-
ily decisions or joint subscriptions on customer churn."”,

"Aggregate": "PaperlessBilling (masks 0 and 1) and DeviceProtection
(masks 2 and 3) consistently appear in multiple steps, highlighting their
significance in predicting customer churn. PaymentMethod also appears
in masks 0 and 3, suggesting the importance of billing methods in this
context. On the other hand, unique features like SeniorCitizen and
InternetService give insight into the potential impact of demographics
and service type respectively. In essence, customer service preferences,
billing methods, and charges, along with certain demographic elements,
are key in predicting customer churn in this dataset. For a comprehensive
understanding, a deeper dive into the interaction of these features and
their respective weights in the prediction model would be beneficial." }
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Diabetes

{ "Mask 0": "In the initial step, the model identifies discharge disposi-
tion id, number of diagnoses, and specific medications (glyburide, and
citoglipton) as key features. This suggests a combination of administra-
tive data (discharge process), clinical data (diagnoses), and prescribed
medications play a significant role in predicting patient readmission.",
"Mask 1": "Here, the model focuses on the patient’s admission type and
discharge disposition, emphasizing the importance of the hospital admis-
sion and discharge process in determining the likelihood of readmission.
The absence of clinical and medication features in this step indicates
a potential higher influence of administrative processes at this stage of
feature selection.”,

"Mask 2": "The model reintroduces clinical data (number of diagnoses)
and adds a new medication (metformin), while retaining admission type
id. This combination underscores a nuanced interplay between the nature
of hospital admission, the complexity of patient’s health conditions, and
specific treatments in predicting readmissions.",

"Mask 3": "This step focuses on the number of diagnoses and two
medications (glipizide and metformin). The consistency of number of
diagnoses across masks highlights its pivotal role, while the introduction
of glipizide and retention of metformin point towards an evolving em-
phasis on medication in conjunction with clinical data.",

"Aggregate": "Number diagnoses (masks 0, 2, and 3) and discharge
disposition id (masks O and 1) are recurrent, underscoring their per-
sistent importance in predicting readmissions. Admission type id also
appears consistently (masks 1 and 2), linking the administrative process
tightly with readmission predictions. The changing set of medications
across the masks (glyburide, citoglipton, metformin, glipizide) points
to the dynamic nature of treatment’s role in the prediction, warranting a
closer look into specific medication combinations and their interactions
with clinical and administrative data. The aggregate analysis reveals a
complex interplay between administrative processes, clinical data, and
medication in predicting patient readmissions, suggesting a multifaceted
approach for model refinement and interpretation.” }
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Higgs

{ "Mask 0": "The initial feature selection emphasizes on variables related
to kinematics and energy in the Higgs dataset, particularly invariant mass
of the lepton, missing energy, and jets, implying these measurements play
a fundamental role in distinguishing signal from background processes.",
"Mask 1": "At this step, the model focuses on the Azimuthal angle for
the second leading jet, suggesting that the orientation or direction of this
jet may have a unique significance in the classification process.",
"Mask 2": "Here, the model considers the transverse momentum of the
second leading jet alongside the invariant mass of the lepton, missing
energy, and leading jet. This suggests an interplay between momentum
and energy variables as critical determinants in the classification.",
"Mask 3": "In this step, the B-tagging score for the second leading jet
and the pseudorapidity of the lepton are highlighted. B-tagging, used to
identify the presence of a b-quark, combined with the pseudorapidity,
indicates the model’s attempt to understand particle behavior and proper-
ties for classification.",

"Aggregate": "Over the feature selection steps, emphasis is consistently
placed on high-energy physics variables, particularly those related to
jets and leptons. The invariant mass of the lepton and missing energy
are repeated features, appearing in both masks 0 and 2, showcasing
their importance in the classification process. Momentum and angular
measurements, like the Azimuthal angle and transverse momentum, also
play a pivotal role. As the steps progress, there’s an evident shift from
energy-related features to more particle-specific characteristics, such as
B-tagging. Overall, the classification in the Higgs dataset relies heavily
on a combination of energy measurements, momentum, and particle
properties."}
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5.10. GPT-4 Interpretability Sanity Check

Table 8: GPT-4 Analysis without InterpreTabNet

Prompts

Outputs

Identify the most important features of the following dataset and
conduct aggregate text analysis on it. Please output ONLY a dic-
tionary and no other natural language generation when generating
the sentence. The Adult Census Income dataset is considered
which predicts whether an individual’s income exceeds $50,000
per year. The features are as follows: Age. Workclass. Final
Weight. Education. Education Number of Years. Marital-status.
Occupation. Relationship. Race. Sex. Capital-gain. Capital-loss.
Hours-per-week. Native-country.

Indicate the most important features of the following dataset.
Please output ONLY a dictionary and no other natural language
generation when generating the sentence. The Adult Census In-
come dataset is considered which predicts whether an individual’s
income exceeds $50,000 per year. The features are as follows:
Age. Workclass. Final Weight. Education. Education Number
of Years. Marital-status. Occupation. Relationship. Race. Sex.
Capital-gain. Capital-loss. Hours-per-week. Native-country.

{ "Important Features": "Numerical": ["Age", "Final Weight",
"Education Number of Years", "Capital-gain", "Capital-loss",
"Hours-per-week"], "Categorical": ["Workclass", "Education”,
"Marital-status”, "Occupation”, "Relationship", "Race", "Sex",
"Native-country"] , "Aggregate Text Analysis": { "Income Predic-
tion": "The Adult Census Income dataset is used to predict if an
individual’s income exceeds $50,000 per year based on various
demographic and financial features." } }

{ "Important Features": ["Age", "Education Number of Years",
"Marital-status", "Occupation”, "Relationship”, "Capital-gain",

"Capital-loss", "Hours-per-week" ] }

Table 9: GPT-4 Prompts in different formats

Section Description

Goal & Format

Dataset Description

Mask Description

Generate a dictionary analysis of the feature masks described below. The output should consist solely of a
dictionary, with no additional explanatory text. Keys should be the mask identifiers, and values should be lists
containing single-word descriptors that capture the essence of the features identified at each step of feature
selection. The descriptors should be as succinct as possible.

For the Adult Census Income dataset, which predicts whether an individual’s income exceeds $50,000 per year
based on 50 test samples and 14 features, the following observations were made:

At the Oth step of feature selection, we observe mask 0 with the main features highlighted as 1, 5 and 7 which
are workclass, marital status and relationship. At the 1st step of feature selection, we observe mask 0 with
the main features highlighted as 1 and 5 which are workclass and marital status. At the 2nd step of feature
selection, we observe mask 2 with the main features highlighted as 8, 10 and 12 which are race, capital gain
and hours-per-week. Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features
highlighted as 1, 7 and 10 which are workclass, relationship and capital-gain.

GPT-4 Output

{ "Mask 0": ["Employment", "Marital", "Relationship"], "Mask 1": ["Employment", "Marital"], "Mask 2":
["Ethnicity", "Income", "Worktime"], "Mask 3": ["Employment", "Relationship", "Income"] }
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Table 10: GPT-4 Prompts in varying detail levels

Section

Description

Less Detailed Goal

Moderately Detailed Goal

More Detailed Goal

Generate a dictionary with key insights from feature masks. Output a dictionary with keys
as "Mask <step>’ and values as single-word descriptors of the most significant feature(s) at
each step. The descriptors should summarize the feature’s impact on predicting an individual’s
income in the Adult Census Income dataset.

Construct a dictionary summarizing the significance of feature masks in predicting income
levels in the Adult Census Income dataset. For each mask, output a dictionary with a list of
descriptors, each a concise term that captures the importance of the features at that step of
selection.

Create a detailed dictionary explaining the role of each feature mask in the context of the Adult
Census Income dataset. Each dictionary entry should include the step number as the key and a
list of phrases as the value, capturing the nuanced significance of each feature in predicting
whether an individual’s income exceeds $50,000 per year.

GPT-4 Less Detailed Output

GPT-4 Moderately Detailed Output

GPT-4 More Detailed Output

{ "Mask 0": ["Primary"], "Mask 1": ["Secondary"], "Mask 2": ["Tertiary"], "Mask 3":
["Quaternary"] }

{"Mask 0": ["Work", "Family", "Relations"], "Mask 1": ["Work", "Family"], "Mask 2":
["Ethnicity"”, "Investment”, "Labor"], "Mask 3": ["Work", "Relations", "Investment"]}

{"Mask 0": ["Employment class", "Marital bonds", "Social ties"], "Mask 1": ["Employment
status", "Marital status"], "Mask 2": ["Ethnicity diversity", "Capital growth", "Work duration"],

"on

"Mask 3": ["Employment nature", "Social relationship", "Capital investment"]}
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'Y You

what is a feature mask?

ChatGPT

A feature mask, in the context of machine learning and data science, is a method or
array used to include or exclude certain features (vanables or predictors) in a model. It
15 essentially a way to filter the features that you want your algorithm to consider when
making predictions or analyzing data. The concept of a feature mask can be applied in

various contexts and for different purposes:

. Feature Selection: In machine learning, feature selection is the process of selecting a
subset of relevant features for use in model construction. A feature mask might be
used to indicate which features are selected (mask value of 1) and which are not (mask
value of 0). This can help in reducing overfitting, improving model performance, and
reducing computation time.

2. Dimensionality Reduction: Feature masks can be involved in dimensionality reduction

techniques, where the goal is to reduce the number of input variables to a model.

Techniques such as PCA (Principal Component Analysis) or LDA (Linear Discriminant

Analysis) don't use a feature mask explicitly, but other techniques like feature

selection algorithms (e.g., selecting k-best features) might output a feature mask

indicating the selected features.

3. Dealing with Missing Data: Sometimes, feature masks are used to handle missing

data within datasets. A mask might indicate whether a particular value is present or

missing. This can guide algorithms in handling or imputing missing values

appropriately.

4. Model Interpretability and Explanation: In the context of model interpretability,
feature masks might be used to understand which features are contributing to a
maodel's predictions. For instance, in certain types of neural networks or in technigues
like SHAP (SHapley Additive exPlanations), a feature mask might help in visualizing or
quantifying the impact of each feature on the model's output.

. Regularization: In regularization techniques (like LASS0), although a mask is not
explicitly used, the concept is somewhat similar where coefficients of certain features

are shrunk towards zero, effectively "masking"” them out of the model.

In practice, a feature mask can be implemented simply as an array or list of boolean
values (True/False) or binary values (1/0) corresponding to the features in a dataset.
The specific implementation and use can vary significantly based on the exact

application or technique being employed.

Figure 12: Feature Mask Definition Check
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